Big data, video-on-demand, social networking and the rapid adoption of cloud computing in consumer and enterprise applications are dramatically changing the requirements for large-scale data storage. Data center operators and Cloud Service Providers (CSPs) such as Amazon Web Services and Microsoft Azure are facing a new and demanding set of challenges: the need to continually scale storage capacity, to respond to changing application requirements, and to optimize the efficiency and performance of an array of Solid State Disks (SSDs) while reducing the cost-per-gigabyte of storage in order to control their expenditure on infrastructure.

In response to these new requirements, the industry has developed the Open Channel architecture, providing a new model for the control and operation of individual SSD devices in data centers which serve multiple tenants and applications. The storage software engineers at CSPs and data centers have expertise in managing and optimizing storage capacity. In their dynamic operating environment, it is essential to have a flexible platform for storage provision which supports a rapid response to new application requirements and which facilitates timely enablement of new features.

For similar reasons, the systems integrators which provide complete hardware/software solutions to enterprise customers also need a flexible platform for the rapid, cost-efficient development of customized storage systems.

The Open Channel model provides important benefits:

- **Optimization of storage arrays for specific workloads.** In a multi-tenant environment, multiple applications with different operational requirements run on shared physical storage devices. In the Open Channel architecture, the storage capability of each individual SSD can be configured optimally for each application and changed dynamically.

- **Rapid adoption of new SSD devices accelerating cost reductions.** Ultra-high density 3D and QLC NAND Flash technologies provide the lowest cost-per-gigabyte. The time required to qualify Open Channel compliant SSDs is shortened, reducing the cost of introducing new storage technologies into data center infrastructure.

- **Creation of a larger, diverse SSD ecosystem.** When continually scaling storage capacity, data center operators and CSPs source new SSDs from multiple suppliers, giving them a stronger negotiating position and greater supply-chain flexibility. The Open Channel architecture simplifies the control technology on the SSD device side, supporting the development of a more compatible, interoperable ecosystem of SSD suppliers.
Key attributes in an Open Channel SSD

The Open Channel specification provides a new type of SSD architecture based on the NVMe protocol for the interface between a host and SSD. It enables the partitioning of functions, so that data placement, the main function of Flash Translation Layer (FTL) software, is executed on the host side, while media management functions, such as NAND Flash access and error correction, may be implemented in the SSD device (see Figure 1).

The parallel internal paths in an Open Channel SSD are exposed to the host, so that the host can control the entire I/O channel down to physical locations within an individual SSD device. This enables the host - which knows the requirements of the applications which it is running on an SSD device - to optimize data placement and maintain appropriate I/O isolation (see Figure 2). When the SSD’s physical memory locations are exposed to the application software, the allocation of data can be arranged to provide for isolation of I/Os belonging to different applications, or to different tenants in a multi-tenant environment.

This eliminates the risk that one application’s Read or Write operations could delay or interfere with another’s. The result: reduced latency in data-transfer operations; and equally important, predictable latency (see Figure 3).

Fig. 1: the Open Channel architecture provides for partitioning of data placement and media management

Fig. 2: when FTL is implemented on the host side, the host can maintain appropriate I/O isolation and optimize data placement

Fig. 3: in an Open Channel architecture, the SSD media’s contribution to latency is transparent to the host and entirely predictable.

<table>
<thead>
<tr>
<th>Traditional SSD</th>
<th>Open-Channel SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Host</td>
</tr>
<tr>
<td>Drive</td>
<td>Data Placement</td>
</tr>
<tr>
<td>Data Placement (T_x)</td>
<td>Low & Predictable</td>
</tr>
<tr>
<td>Media Management (T_media)</td>
<td>T_media : fixed by media</td>
</tr>
</tbody>
</table>

- T_x: uncertain
 - command processing
 - IO scheduling
 - Garbage collection...

- T_{media}: Within a period of time
The partitioning of media management and data management functions between the device and the host also play to the strengths of NAND Flash storage device manufacturers on the one hand, and data center software engineers on the other. SSD manufacturers maintain large teams of NAND Flash experts, who have built an exhaustive knowledge of the behavior of NAND Flash, of the effects of operating temperature and other conditions, of the rate of degradation versus the number of Program / Erase cycles, and of the proper fault diagnosis and recovery operations.

Likewise, software development engineers at CSPs, data center operators and systems integrators bring to bear their deep knowledge of applications to enable them to optimize data placement and I/O scheduling.

Introduction of Open Channel SSDs

Following the creation of the Open Channel specification, data center operators and cloud computing service providers have been evaluating the hardware options available for implementing Open Channel-compliant SSD designs. This has prompted the industry’s leading suppliers of SSD controller solutions to introduce new products that include Open Channel support. Silicon Motion is the world’s largest manufacturer of merchant SSD controllers by revenue and unit shipments. In August 2018, at Flash Memory Summit the SM2270 was introduced as the world’s first dual-mode NVMe controller solution, enabling operation of either standard NVMe or customizable Open Channel SSDs.

This customization capability is an essential feature of SSD devices for use in an Open Channel environment. The Open Channel v1.2 and v2.0 specifications have been ratified by the storage industry, but are not being implemented universally as standard technologies. Rather they provide a framework within which data centers, CSPs and other large users of SSD storage implement their own system solution, often with a unique and proprietary interface between the host and SSD.

SSD controller solutions from Silicon Motion readily support requirements for custom implementations of the Open Channel architecture.

This is because of the unique configuration of the ASIC and firmware at the heart of every Silicon Motion controller solution. Providing a broad range of customizations of an SSD design to meet the user’s individual specifications, the SM2270 allows the user to specify:

- the interface command sets
- the partitioning of FTL jobs between the host and the SSD

There are two other crucial attributes required of the controller in an Open Channel SSD:

- Advanced media management for the latest generations of NAND Flash technology
- Data integrity technologies which perform comprehensive error detection and correction

Advanced media management

NAND Flash manufacturers have succeeded in refining the processes for manufacturing leading-edge 3D and QLC (Quad Layer Cell) NAND Flash memory. These NAND Flash ICs offer substantial density and cost-per-gigabyte advantages over earlier generations of NAND Flash. They do, however, require the application of technologies to balance the allocation of Write operations evenly across all physical storage locations, and to correct bit errors in Read and Write operations.

The technologies integrated into the SM2270 SSD controller solution are the industry’s most effective for prolonging reliable operation, and are proven in mission-critical industrial and embedded applications. Silicon Motion draws on more than two decades of experience in managing NAND Flash media. Silicon Motion’s relationships with the world’s leading Flash manufacturers provide a unique level of insight into
the characteristics of NAND including latest 3D TLC and QLC technology innovations.

This expertise is reflected in the advanced media management technologies implemented in Silicon Motion SSD controller solutions. These include Silicon Motion’s NANDXtend™ technology, which incorporates machine learning error-recovery algorithms.

In addition, the Open Channel architecture does not require the SSD to maintain the mapping table in DRAM as data management is performed by the host, potentially reducing DRAM cost. By eliminating the DRAM and enabling the use of the lowest-cost-per-gigabyte, highest-density NAND Flash technologies, Silicon Motion helps SSD manufacturers to deliver products which meet the most demanding capacity and cost specifications set by data centers, CSPs and systems integrators while supporting the industry’s Open Channel initiative.

High data integrity
Several types of NAND errors can occur during NAND Flash access. Reliable operation of an Open Channel SSD requires the detection and correction of these errors.

An Open Channel SSD based on an SM2270 controller solution can provide a near error-free data output enabled by implementation of advanced data integrity features in the controller. These include end-to-end data path protection, which applies ECC to buffer memory as well as to the primary NAND Flash memory array. This maintains the integrity of every bit of data as it is transmitted between the host and the SSD as well as between memory and NAND Flash.

Silicon Motion also implements 4kB LDPC, providing comprehensive error detection and correction across the memory array.

The SM2270 enables the SSD to provide a near error-free data output to the host. This frees the host to focus on the core functions of data placement and I/O scheduling without having to monitor the integrity of the data input/output, providing a more efficient partition of tasks between the SSD device and the host.

Flexible and high-performance controller solution for Open Channel SSDs
With its support for Open Channel specifications and for custom implementations of the Open Channel concept, the SM2270 from Silicon Motion provides the ideal controller platform for the development of SSDs supporting the new architecture for data centers and cloud computing facilities.

SSDs based on the SM2270 can safely use the latest high-density generations of NAND Flash media while achieving outstanding levels of reliability with enterprise operating lifetime and data integrity.

All images in this white paper courtesy of Silicon Motion.